Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473974

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a well-known regulator in controlling protein S-nitrosylation modification and nitric oxide (NO) homeostasis. Here, a GSNOR inhibitor N6022 and SlGSNOR silencing were applied to investigate the roles of SlGSNOR in tomato fruit postharvest ripening. We found that the application of N6022 and S-nitrosoglutathione (GSNO, a NO donor), and SlGSNOR silencing delayed the transition of fruit skin color by improving total chlorophyll level by 88.57%, 44.78%, and 91.03%, respectively. Meanwhile, total carotenoid and lycopene contents were reduced by these treatments. Concurrently, the activity of chlorophyll biosynthesis enzymes and the expression of related genes were upregulated, and the transcript abundances of total carotenoid bioproduction genes were downregulated, by N6022 and GSNO treatments and SlGSNOR silencing. In addition, fruit softening was postponed by N6022, GSNO, and SlGSNOR silencing, through delaying the decrease of firmness and declining cell wall composition; structure-related enzyme activity; and gene expression levels. Furthermore, N6022, GSNO, and SlGSNOR silencing enhanced the accumulation of titratable acid; ascorbic acid; total phenol; and total flavonoid, but repressed the content of soluble sugar and soluble protein accompanied with the expression pattern changes of nutrition-related genes. In addition, the endogenous NO contents were elevated by 197.55%; 404.59%; and 713.46%, and the endogenous SNOs contents were enhanced by 74.65%; 93.49%; and 94.85%; by N6022 and GSNO treatments and SlGSNOR silencing, respectively. Altogether, these results indicate that SlGSNOR positively promotes tomato postharvest fruit ripening, which may be largely on account of its negative roles in the endogenous NO level.


Assuntos
Benzamidas , Pirróis , Solanum lycopersicum , Frutas/metabolismo , Óxido Nítrico/metabolismo , Carotenoides , Clorofila
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339212

RESUMO

Growing evidence suggests that exposure of plants to unfavorable environments leads to the accumulation of hydrogen sulfide (H2S) and reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels. Therefore, it is essential to elucidate the mechanisms by which H2S and ROS interact. The molecular mechanism of action by H2S relies on the post-translational modification of the cysteine sulfur group (-SH), known as persulfidation. H2S cannot react directly with -SH, but it can react with oxidized cysteine residues, and this oxidation process is induced by H2O2. Evidently, ROS is involved in the signaling pathway of H2S and plays a significant role. In this review, we summarize the role of H2S-mediated post-translational modification mechanisms in oxidative stress responses. Moreover, the mechanism of interaction between H2S and ROS in the regulation of redox reactions is focused upon, and the positive cooperative role of H2S and ROS is elucidated. Subsequently, based on the existing evidence and clues, we propose some potential problems and new clues to be explored, which are crucial for the development of the crosstalk mechanism of H2S and ROS in plants.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oxirredução , Plantas/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396949

RESUMO

Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid ß-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Oxirredutases/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Família Multigênica
5.
Plant Physiol Biochem ; 207: 108329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184883

RESUMO

Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.


Assuntos
Óxido Nítrico , Plantas , Plantas/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais , Estresse Fisiológico , Processamento de Proteína Pós-Traducional
6.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279340

RESUMO

Brassinosteroids (BRs) are a group of polyhydroxylated steroids for plant growth and development, regulating numerous physiological and biochemical processes and participating in multi-pathway signaling in plants. 24-Epibrassinolide (EBR) is the most commonly used BR for the investigation of the effects of exogenous steroidal phytohormones on plant physiology. Although SlSERK3B is considered a gene involved in the brassinosteroid (BR) signaling pathway, its specific role in plant growth and development has not been reported in detail. In this study, tomato (Solanum lycopersicum L.) seedlings treated with 0.05 µmol L-1 EBR showed a significant increase in plant height, stem diameter, and fresh weight, demonstrating that BR promotes the growth of tomato seedlings. EBR treatment increased the expression of the BR receptor gene SlBRI1, the co-receptor gene SlSERK3A and its homologs SlSERK3B, and SlBZR1. The SlSERK3B gene was silenced by TRV-mediated virus-induced gene silencing (VIGS) technology. The results showed that both brassinolide (BL) content and BR synthesis genes were significantly up-regulated in TRV-SlSERK3B-infected seedlings compared to the control seedlings. In contrast, plant height, stem diameter, fresh weight, leaf area and total root length were significantly reduced in silenced plants. These results suggest that silencing SlSERK3B may affect BR synthesis and signaling, thereby affecting the growth of tomato seedlings. Furthermore, the photosynthetic capacity of TRV-SlSERK3B-infected tomato seedlings was reduced, accompanied by decreased photosynthetic pigment content chlorophyll fluorescence, and photosynthesis parameters. The expression levels of chlorophyll-degrading genes were significantly up-regulated, and carotenoid-synthesising genes were significantly down-regulated in TRV-SlSERK3B-infected seedlings. In conclusion, silencing of SlSERK3B inhibited BR signaling and reduced photosynthesis in tomato seedlings, and this correlation suggests that SlSERK3B may be related to BR signaling and photosynthesis enhancement.


Assuntos
Plântula , Solanum lycopersicum , Solanum lycopersicum/genética , Fotossíntese , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Clorofila/metabolismo , Crescimento e Desenvolvimento
7.
Plant Sci ; 338: 111927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984610

RESUMO

Salt stress is one of the major environmental stressors that remarkably hinders the processes of plant growth and development, thereby limiting crop productivity. An understanding of the molecular mechanisms underlying plant responses against salinity stimulus will help guide the rational design of crop plants to counter these challenges. Nitric oxide (NO) is a redox-related signaling molecule regulating diverse biological processes in plant. Accumulating evidences indicated NO exert its biological functions through posttranslational modification of proteins, notably via S-nitrosylation. During the past decade, the roles of S-nitrosylation as a regulator of plant and S-nitrosylated candidates have also been established and detected. Emerging evidence indicated that protein S-nitrosylation is ubiquitously involved in the regulation of plant response to salt stress. However, little is known about this pivotal molecular amendment in the regulation of salt stress response. Here, we describe current understanding on the regulatory mechanisms of protein S-nitrosylation in response to salt stress in plants and highlight key challenges in this field.


Assuntos
Óxido Nítrico , Plantas , Óxido Nítrico/metabolismo , Plantas/metabolismo , Desenvolvimento Vegetal , Estresse Salino , Transdução de Sinais , Processamento de Proteína Pós-Traducional
8.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003253

RESUMO

Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development, and response to abiotic stress. However, the characterization and function of FLAs in tomato are currently unknown. In this study, members of the tomato FLA family are characterized and analyzed in relation to their response to phytohormonal and abiotic stresses. The results show that a total of 24 FLA members were characterized in tomato. The structural domain analysis showed that these members have a high protein similarity. The expression profiles of different tissues indicated that the genes of most members of the tomato FLA gene family are highly expressed in roots, but to a lower extent in fruits. qRT-PCR analysis revealed that all 24 tomato FLA genes are responsive to ABA and MeJA. SlFLAs showed a positive response to salt and cold stress. SlFLA1, SlFLA12, and SlFLA14 are significantly induced under darkness. SlFLA1 and SlFLA3 are significantly induced under drought stress. This study provides a basis for a further understanding of the role of tomato FLA homologous genes in plant response to abiotic stress and lays the foundation for further research on the function of FLAs in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Hormônios , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
10.
Plant Physiol Biochem ; 203: 108075, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37801738

RESUMO

Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 µM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Trealose , Antioxidantes/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Estresse Fisiológico/genética , Plântula , DNA/farmacologia , Regulação da Expressão Gênica de Plantas
11.
Hortic Res ; 10(10): uhad174, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37841501

RESUMO

Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.

12.
Nitric Oxide ; 138-139: 51-63, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364740

RESUMO

Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.


Assuntos
Heme , Sulfeto de Hidrogênio , Monóxido de Carbono/metabolismo , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estresse Fisiológico , Plantas/metabolismo , Heme Oxigenase (Desciclizante)
13.
PeerJ ; 11: e15310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163152

RESUMO

Abscisic acid (ABA) is a plant hormone that plays an important regulatory role in plant growth and stress response. The AREB (ABA-responsive element binding protein)/ABF (ABRE-binding factor) are important ABA-signaling components that participate in abiotic stress response. However, genome-scale analysis of ABF/AREB has not been systemically investigated in tomato. This study was conducted to identify tomato ABF/AREB family members and analyze their response to ABA and abiotic stresses. The results show that a total of 10 ABF/AREB members were identified in tomato, which are randomly distributed on five chromosomes. Domain analysis showed that these members exhibit high protein similarity, especially in the basic leucine zipper (bZIP) domain region. Subcellular localization analysis indicated that all 10 ABF/AREB members are localized in the nucleus. Phylogenetic tree analysis showed that tomato ABF/AREB genes are divided into two groups, and they are similar with the orthologs of other plants. The analysis of cis-acting elements showed that most tomato ABF/AREB genes contain a variety of hormones and stress-related elements. Expression profiles of different tissues indicated that SlABF2 and SlABF10 play an important role in fruit ripening. Finally, qRT-PCR analysis revealed that 10 tomato ABF/AREB genes respond to ABA, with SlABF3 being the most sensitive. SlABF3, SlABF5 and SlABF10 positively respond to salt and cold stresses. SlABF1, SlABF3 and SlABF10 are significantly induced under UV radiation treatment. SlABF3 and SlABF5 are significantly induced in osmotic stress. Overall, this study may provide insight into the role of tomato ABF/AREB homologues in plant response to abiotic stresses, which laid a foundation for future functional study of ABF/AREB in tomato.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/farmacologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Filogenia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Plantas/metabolismo , Resposta ao Choque Frio
14.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178544

RESUMO

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Assuntos
Brassica , Compostagem , Bovinos , Feminino , Animais , Ovinos , Solo/química , Esterco , Fertilizantes , Melhoramento Vegetal , Nutrientes
15.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047369

RESUMO

More than 15,000 scientific articles published since the late 1950s related to RNS action or detection in various plant materials are listed in the Web of Science database [...].


Assuntos
Óxido Nítrico , Plantas , Óxido Nítrico/metabolismo , Plantas/metabolismo , Transdução de Sinais
16.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982350

RESUMO

The root is an important organ for obtaining nutrients and absorbing water and carbohydrates, and it depends on various endogenous and external environmental stimulations such as light, temperature, water, plant hormones, and metabolic constituents. Auxin, as an essential plant hormone, can mediate rooting under different light treatments. Therefore, this review focuses on summarizing the functions and mechanisms of light-regulated auxin signaling in root development. Some light-response components such as phytochromes (PHYs), cryptochromes (CRYs), phototropins (PHOTs), phytochrome-interacting factors (PIFs) and constitutive photo-morphorgenic 1 (COP1) regulate root development. Moreover, light mediates the primary root, lateral root, adventitious root, root hair, rhizoid, and seminal and crown root development via the auxin signaling transduction pathway. Additionally, the effect of light through the auxin signal on root negative phototropism, gravitropism, root greening and the root branching of plants is also illustrated. The review also summarizes diverse light target genes in response to auxin signaling during rooting. We conclude that the mechanism of light-mediated root development via auxin signaling is complex, and it mainly concerns in the differences in plant species, such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), changes of transcript levels and endogenous IAA content. Hence, the effect of light-involved auxin signaling on root growth and development is definitely a hot issue to explore in the horticultural studies now and in the future.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Fitocromo/metabolismo , Transdução de Sinal Luminoso , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
17.
Plants (Basel) ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840068

RESUMO

Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest.

18.
Plants (Basel) ; 12(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840294

RESUMO

Hydrogen gas (H2) is an important molecular messenger in animal and plant cells and is involved in various aspects of plant processes, including root organogenesis induction, stress tolerance and postharvest senescence. This study investigated the effect of H2 fumigation on the quality of Lanzhou lily scales. The results indicated the H2 remarkably declined the color variation and browning degree in Lanzhou lily scales by suppressing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO). Moreover, H2 significantly alleviated the degradation of soluble proteins and soluble sugars in Lanzhou lily scales during postharvest storage, mitigating the decline in nutritional quality. This alleviating effect of H2 might be achieved by increasing the endogenous H2 concentration. Collectively, our data provide new insights into the postharvest quality reduction of Lanzhou lily scales mitigated by H2 fumigation.

19.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
20.
Front Plant Sci ; 14: 1323048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186602

RESUMO

The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...